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PREFACE  
 

JASP stands for Jeffrey’s Amazing Statistics Program in recognition of the pioneer of Bayesian 

inference Sir Harold Jeffreys. This is a free multi-platform open-source statistics package, developed 

and continually updated by a group of researchers at the University of Amsterdam. Their aim was to 

develop a free, open-source programme that includes both frequentist, Bayesian and more advanced 

statistical techniques with a major emphasis on providing a simple intuitive user interface. 

In contrast to many statistical packages, JASP provides a simple drag and drop interface, easy access 

menus, intuitive analysis with real-time computation and display of all results. All tables and graphs 

are presented in APA format and can be copied directly and/or saved independently.  Tables can also 

be exported from JASP in LaTeX format 

JASP can be downloaded free from the website https://jasp-stats.org/ and is available for Windows, 

Mac OS X and Linux. You can also download a pre-installed Windows version that will run directly from 

a USB or external hard drive without the need to install it locally. The WIX installer for Windows 

enables you to choose a path for the installation of JASP – however, this may be blocked in some 

institutions by local Administrative rights. 

The programme also includes a data library with an initial collection of over 50 datasets from Andy 

Fields book, Discovering Statistics using IBM SPSS statistics1 and The Introduction to the Practice of 

Statistics2 by Moore, McCabe and Craig. 

Since May 2018 JASP can also be run directly in your browser via rollApp™ without having to install it 

on your computer (https://www.rollapp.com/app/jasp). However, this may not be the latest version 

of JASP. 

Keep an eye on the JASP site since there are regular updates as well as helpful videos and blog posts!! 

Please note that the underlying concepts of Bayesian analyses are not covered in this book since 

there many other books and reviews that cover these in much more depth.  Some easy reading 

papers with reference to JASP are listed on the next page. This is a collection of standalone handouts 

covering the most common Bayesian statistical analyses available in JASP for students studying 

Biological Sciences.  Datasets used in this document are available for download from   

https://osf.io/8qtu2/ 

 

I would also like to acknowledge both EJ Wagenmakers and Johnny van Doorn at the University of 

Amsterdam for their support, in-depth advice and help in compiling this guide. 

 

 

 

Dr Mark Goss-Sampson 

Centre for Science and Medicine in Sport & Exercise 

University of Greenwich 

                                                           
1 A Field. (2017) Discovering Statistics Using IBM SPSS Statistics (5th Ed.) SAGE Publications. 
2 D Moore, G McCabe, B Craig. (2011) Introduction to the Practice of Statistics (7th Ed.) W H Freeman. 

https://jasp-stats.org/
https://www.rollapp.com/app/jasp
https://osf.io/8qtu2/
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USING THE JASP ENVIRONMENT 
Open JASP. 

 

 

The main menu can be accessed by clicking on the top-left icon.  

Open: 

JASP has its own .jasp format but can open a variety of 

different dataset formats such as:  

 .csv (comma separated values) can be saved in Excel 

 .txt (plain text) also can be saved in Excel 

 .tsv (tab-separated values) also can be saved in Excel 

 .sav (IBM SPSS data file) 

 .ods (Open Document spreadsheet) 

You can open recent files, browse your computer files, 

access the Open Science Framework (OSF) or open the 

wide range of examples that are packaged with the Data 

Library in JASP. 

 

 

 

 



   

8 | P a g e  
JASP – Bayesian Inference.  Dr Mark Goss-Sampson 

Save/Save as: 

Using these options the data file, any annotations and the analysis 

can be saved in the .jasp format 

Export: 

Results can be exported to an HTML file 

Data can be exported to either a .csv or .txt file 

Sync data: 

Used to synchronize with any updates in the current data file (also 

can use Ctrl-Y) 

Close: 

As it states - it closes the current file but not JASP 

 

 

Preferences: 

There are three sections that users can use to tweak JASP to suit their needs 

 

 

 

 

 

 

 

 

 

 

 

 

In the Data Preferences section users can: 

 Synchronize/update the data automatically when the data file is saved (default) 

 Set the default spreadsheet editor (i.e. Excel, SPSS etc) 

 Change the threshold so that JASP more readily distinguishes between nominal and scale data  

 Add a custom missing value code 
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In the Results Preferences section users can: 

 

 Fix the number of decimals for data in tables – makes tables easier to read/publish 

 Change the pixel resolution of the graph plots 

 Select when copying graphs whether they have a white or transparent background. 

 

 

 

 

 

 

 

 

 

 

 

 

In the Interface Preferences section users can now pick between two different themes; a light theme 

(default) and a dark theme.  The preferred language currently supports English and Dutch only.  In this 

section, there is also the ability to change the system font size for accessibility and the scroll speeds. 

 

In the Advanced Preferences section, most users will probably never have to change any of the default 

settings. 
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Comparison of the dark and light themes in JASP 
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JASP has a streamlined interface to switch between the spreadsheet, analysis and results views. 

 

 

 

The vertical bars highlighted above allows for the windows to be dragged right or left by clicking and 

dragging  the three vertical dots 

 

The individual windows can also be completely collapsed using the right or left arrow icons  

 

If you hover the cursor over the Results a     icon appears, clicking on this provides a range of options 

including: 

 Remove all analyses from the output window 

 Remove selected analysis 

 Collapse the output 

 Add notes to each output 

 Copy 

 Copy special (LaTeX code) 

 Save image as 

 

The ‘add notes’ option allows the results output to be easily annotated and then exported to an HTML 

file by going to File > Export Results. 
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The Add notes menu provides many options to change text font, colour size etc. 

 

 

You can change the size of all the tables and graphs using ctrl+ (increase) ctrl- (decrease) ctrl= (back 

to default size). Graphs can also be resized by dragging the bottom right corner of the graph. 

As previously mentioned, all tables and figures are APA standard and can just be copied into any other 

document. Since all images can be copied/saved with either a white or transparent background. This 

can be selected in  Preferences > Advanced as described earlier. 

 

There are many further resources on using JASP on the website https://jasp-stats.org/  

https://jasp-stats.org/
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DATA HANDLING IN JASP 
For this section open England injuries.csv 

All files must have a header label in the first row.  Once loaded, the dataset appears in the window: 

 

 

 

 

 

 

 

 

 

 

 

 

For large datasets, there is a hand icon which allows easy scrolling through the data. 

On import JASP makes a best guess at assigning data to the different variable types: 

 

Nominal                                 Ordinal                                       Continuous 

 

If JASP has incorrectly identified the data type just click on the appropriate variable data icon in the 

column title to change it to the correct format.   

 

 

 

 

If you have coded the data, you can click on the variable name to open up the following window in 

which you can label each code. These labels now replace the codes in the spreadsheet view. If you 

save this as a .jasp file these codes, as well as all analyses and notes, will be saved automatically. This 

makes the data analysis fully reproducible. 



   

14 | P a g e  
JASP – Bayesian Inference.  Dr Mark Goss-Sampson 

 

In this window, you can also carry out simple filtering of data, for example, if you untick the Wales 

label it will not be used in subsequent analyses. 

 

  Clicking this icon in the spreadsheet window opens a much more comprehensive set of data 

filtering options: 

 

 

 

 

 

 

 

 

 

 

 

Using this option will not be covered in this document. For detailed information on using more 

complex filters refer to the following link: https://jasp-stats.org/2018/06/27/how-to-filter-your-data-

in-jasp/ 

 

 

 

 

 

 

 

https://jasp-stats.org/2018/06/27/how-to-filter-your-data-in-jasp/
https://jasp-stats.org/2018/06/27/how-to-filter-your-data-in-jasp/
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By default, JASP plots data in the Value order (i.e. 1-4). The order can be changed by highlighting the 

label and moving it up or down using the appropriate arrows: 

 

Move up 

Move down 

Reverse order 

Close 

  

 

 

 

 

 

 

 

If you need to edit the data in the spreadsheet just double click on a cell and the data should open up 

in the original spreadsheet i.e. Excel. Once you have edited your data and saved the original 

spreadsheet JASP will automatically update to reflect the changes that were made, provided that you 

have not changed the file name. 
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JASP ANALYSIS MENU 

 

 

 

The main analysis options can be accessed from the main toolbar. JASP offers a range of frequentist 

and Bayesian (parametric and non-parametric) statistics and for the purpose of this guide the 

following alternative Bayesian tests are described: 

 

Descriptives 

 Descriptive stats 
 

Bayesian Correlation & Regression 

 Correlation 

 Linear regression 
 

Bayesian T-Tests 

 Independent 

 Paired 

 One sample 
 

Bayesian Frequencies 

 Binomial test 

 Multinomial test 

 Contingency tables 
 

Bayesian ANOVA 

 Independent 

 Repeated measures 

 Mixed factor 
 

BAIN 

 Bayesian informative hypotheses 
evaluation 

 

BY clicking on the + icon on the top-right menu bar you can also access advanced options including; 

Network analysis, Meta-Analysis, Structural Equation Modelling and Bayesian Summary stats.  

Once you have selected your required analysis all the possible statistical options appear in the left 

window and output in the right window. 

JASP has the ability to rename and ‘stack’ the results output thereby organising multiple analyses. 

 

 

 

 

 

The individual analyses can be renamed using the pen icon or deleted using the red cross. 
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By clicking on the analysis in this list will then take you to the appropriate part of the results output 

window. They can also be rearranged by dragging and dropping each of the analyses. 

The green + icon produces a copy of the chosen analysis 

The blue information icon provides detailed information on each of the statistical procedures used 

and a search option. 
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DESCRIPTIVE STATISTICS 
Presentation of all the raw data is very difficult for a reader to visualise or to draw any inference on. 

Descriptive statistics and related plots are a succinct way of describing and summarising data but do 

not test any hypotheses. There are various types of statistics that are used to describe data: 

 Measures of central tendency 

 Measures of dispersion 

 Percentile values 

 Measures of distribution 

 Descriptive plots 

In order to explore these measures, load Descriptive data.csv into JASP. Go to Descriptives > 

Descriptive statistics and move the Variable data to the Variables box on the right. 

  

 

 

 

 

 

 

 

 

 

 

The Statistics menu can now be opened to see the various options available.  
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CENTRAL TENDENCY. 

This can be defined as the tendency for variable values to cluster around a central value. The three 

ways of describing this central value are mean, median or mode. If the whole population is considered, 

we the term population mean / median/mode is used. If a sample/subset of the population is being 

analysed the term sample mean/ median/mode is used. The measures of central tendency move 

toward a constant value when the sample size is sufficient to be representative of the population. 

In the Statistics options make sure that everything is unticked apart from mean, median and mode. 

  

 

 

 

 

 

 

The mean, M or x̅ (17.71) is equal to the sum of all the values divided by the number of values in the 

dataset i.e. the average of the values. It is used for describing continuous data. It provides a simple 

statistical model of the centre of distribution of the values and is a theoretical estimate of the ‘typical 

value’. However, it can be influenced heavily by ‘extreme’ scores. 

The median, Mdn (17.9) is the middle value in a dataset that has been ordered from the smallest to 

largest value and is the normal measure used for ordinal or non-parametric continuous data. Less 

sensitive to outliers and skewed data 

The mode (20.0) is the most frequent value in the dataset and is usually the highest bar in a distribution 

histogram 

DISPERSION  
In the Statistics options make sure that the following options are ticked 

 

 

 

 

 

  

Standard deviation, S or SD (6.94) is used to quantify the amount of dispersion of data values around 

the mean. A low standard deviation indicates that the values are close to the mean, while a high 

standard deviation indicates that the values are dispersed over a wider range. 



   

20 | P a g e  
JASP – Bayesian Inference.  Dr Mark Goss-Sampson 

Variance (S2 = 48.1) is another estimate of how far the data is spread from the mean. It is also the 

square of the standard deviation.  

The standard error of the mean, SE  (0.24) is a measure of how far the sample mean of the data is 

expected to be from the true population mean. As the size of the sample data grows larger the SE 

decreases compared to S and the true mean of the population is known with greater specificity. 

MAD, median absolute deviation, a robust measure of the spread of data. It is relatively unaffected 

by data that is not normally distributed. Reporting median +/- MAD for data that is not normally 

distributed is equivalent to mean +/- SD for normally distributed data.  

MAD Robust: Median absolute deviation of the data points, adjusted by a factor for asymptotically 

normal consistency. 

IQR - Interquartile Range is similar to the MAD but is less robust (see Boxplots). 

Variance: Variance of the data points 

Credible intervals (CI), although not shown in the general Descriptive statistics output, these are used 

in many other statistical tests. They are an important concept when looking at Bayesian inference and 

are somewhat similar to confidence intervals used in frequentist statistics although their meaning is 

very different. 

Bayesian analyses produce a posterior distribution of the possible effect values. A 95% credible 

interval is simply the central portion of the posterior distribution that contains 95% of the values i.e. 

given the observed data, the effect has a 95% probability of falling within this range. 
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QUARTILES 
In the Statistics options make sure that everything is unticked apart from Quartiles. 

  

 

 

 

 

 

Quartiles are where datasets are split into 4 equal quarters, normally based on rank ordering of 

median values. For example, in this dataset 

1 1 2 2 3 3 4 4 4 4 5 5 5 6 7 8 8 9 10 10 10 

    25%     50%     75%     

 

The median value that splits data by 50% = 50th percentile = 5 

The median value of left side = 25th percentile = 3 

The median value of right side = 75th percentile = 8 

From this the Interquartile range (IQR) range can be calculated, this is the difference between the 75th 

and 25th percentiles i.e. 5.  These values are used to construct the descriptive boxplots later.  The IQR 

can also be shown by ticking this option in the Dispersion menu. 
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DESCRIPTIVE PLOTS IN JASP 
JASP can produce a range of descriptive plots:  

Again, using Descriptive data.csv with the variable data in the Variables box, go to the statistics 

options and under Plots tick Distribution plots, Boxplots – Boxplot Element and Q-Q plots.  

 

Distribution plots 

The Distribution plot is based on splitting the data into frequency bins, this is then overlaid with the 

distribution curve. As mentioned before, the highest bar is the mode (most frequent value of the 

dataset. In this case, the curve looks approximately symmetrical suggesting that the data is 

approximately normally distributed. The second distribution plot is from another dataset which shows 

that the data is positively skewed. 
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Boxplots 

The boxplots visualise several statistics described above in one plot: 

 Median value 

 25 and 75% quartiles   

 Interquartile range (IQR) i.e. 75% - 25% quartile values 

 Maximum and minimum values plotted with outliers excluded 

 Outliers are shown if requested 

 

 

 

 

 

 

 

 

 

Maximum value 

Median value 

Minimum value 

75% quartile 

25% quartile 

IQR 

Top 25% 

Bottom 25% 

Outlier 
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Go back to the statistics options, in Descriptive plots tick both Boxplot and Violin Element, look at how 

the plot has changed. Next tick Boxplot, Violin and Jitter Elements. The Violin plot has taken the 

smoothed distribution curve from the Distribution plot, rotated it 90o and superimposed it on the 

boxplot.  The jitter plot has further added all the data points. 

  

 

 

 

 

 

 

 

 

 

 

 

A Q-Q plot (quantile-quantile plot) can be used to visually assess if a set of data comes from a normal 

distribution. Q-Q plots take the sample data, sort it in ascending order, and then plot them against 

quantiles (percentiles) calculated from a theoretical distribution. If the data is normally distributed, 

the points will fall on or close to the 45-degree reference line. If the data is not normally distributed, 

the points will deviate from the reference line. 

 

 

 

 

 

 

 

 

 

 

 

 

Boxplot + Violin plot Boxplot + Violin + Jitter plot 
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Scatter plots 

JASP v0.12 introduced the ability to produce scatterplots of various types and to be able to include 

smooth or linear regression lines. There are also options to add distributions to these either in the 

form of density plots or histograms. 

 

 

Pie charts 

Also introduced was the ability to plot piecharts when working with categorical or other frequency 

data. 

 

 

 

 

 

 

 

 

 

Plot colour palettes 

Users can choose from between 5 different colour 

palettes using the drop-down menu 
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SPLITTING DATA FILES 
If there is a grouping variable (categorical or ordinal) descriptive statistics and plots can be produced 

for each group. Using Descriptive data.csv with the variable data in the Variables box now add Group 

to the Split box.  
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EXPLORING DATA INTEGRITY  
Sample data is used to estimate parameters of the population whereby a parameter is a measurable 

characteristic of a population, such as a mean, standard deviation, standard error or confidence 

intervals etc.  

What is the difference between a statistic and a parameter? If you randomly polled a selection of 

students about the quality of their student bar and you find that 75% of them were happy with it. That 

is a sample statistic since only a sample of the population were asked. You calculated what the 

population was likely to do based on the sample. If you asked all the students in the university and 

90% were happy you have a parameter since you asked the whole university population. 

Bias can be defined as the tendency of a measurement to over- or under-estimate the value of a 

population parameter. There are many types of bias that can appear in research design and data 

collection including: 

 Participant selection bias – some being more likely to be selected for study than others 

 Participant exclusion bias - due to the systematic exclusion of certain individuals from the 

study 

 Analytical bias - due to the way that the results are evaluated 

However statistical bias can affect a) parameter estimates, b) standard errors and confidence intervals 

or c) test statistics and p values.  So how can we check for bias? 

IS YOUR DATA CORRECT? 

Outliers are data points that are abnormally outside all other data points. Outliers can be due to a 

variety of things such as errors in data input or analytical errors at the point of data collection Boxplots 

are an easy way to visualise such data points where outliers are outside the upper (75% + 1.5 * IQR) 

or lower (25% - 1.5 * IQR) quartiles 

 

 

 

 

 

 

 

 

 

 

 

Boxplots show: 

 Median value 

 25 & 75% quartiles   

 IQR – Inter quartile range 

 Max & min values plotted 

with outliers excluded 

 Outliers shown if requested 



   

28 | P a g e  
JASP – Bayesian Inference.  Dr Mark Goss-Sampson 

Load Exploring Data.csv into JASP. Under Descriptives > Descriptive Statistics, add Variable 1 to the 

Variables box. In Plots tick the following Boxplots, Label Outliers, and BoxPlot Element. 

 

The resulting Boxplot on the left looks very compressed and an obvious outlier is labelled as being in 

row 38 of the dataset. This can be traced back to a data input error in which 91.7 was input instead of 

917.  The graph on the right shows the BoxPlot for the ‘clean’ data. 

 

 

 

 

 

 

 

 

 

How you deal with an outlier depends on the cause. Most parametric tests are highly sensitive to 

outliers while non-parametric tests are generally not.   

Correct it? – Check the original data to make sure that it isn’t an input error, if it is, correct it,  and 

rerun the analysis. 

Keep it? - Even in datasets of normally distributed, data outliers may be expected for large sample 

sizes and should not automatically be discarded if that is the case. 
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Delete it? – This is a controversial practice in small datasets where a normal distribution cannot be 

assumed. Outliers resulting from an instrument reading error may be excluded but it should be verified 

first. 

Replace it? – Also known as ‘winsorizing’. This technique replaces the outlier values with the relevant 

maximum and/or minimum values found after excluding the outlier. 

Whatever method you use must be justified in your statistical methodology and subsequent analysis. 

 

WE MAKE MANY ASSUMPTIONS ABOUT OUR DATA. 

When using parametric tests, we make a series of assumptions about our data and bias will occur if 

these assumptions are violated, in particular: 

 Normality  

 Homogeneity of variance or homoscedasticity 

Many statistical tests are an omnibus of tests of which some will check these assumptions. 

 

ASSESSING THE ASSUMPTION OF NORMALITY 

 Normality does not mean necessarily that the data is normally distributed per se but it is whether or 

not the dataset can be well modelled by a normal distribution. Normality can be explored in a variety 

of ways: 

 Numerically 

 Visually / graphically 

 Statistically 

Using Exploring data.csv, go to Descriptives>Descriptive Statistics move Variables 2 and 3 to the 

Variables box and in Plots tick Distribution plot.  This will show the following two graphs: 

 

 

 

 

 

 

 

 

It is quite easy to visualise that Variable 2 has a symmetrical distribution. Variable 3 is skewed to the 

left.  
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Another graphical check for normality is a Q-Q plot.  These show the quantiles of the actual data 

against those expected for a normal distribution. 

 

If data are normally distributed all the points will be close to the diagonal reference line. If the points 

‘sag’ above or below the line, there is a problem with kurtosis. If the points snake around the line, 

then the problem is skewness.  Below are Q-Q plots for Variables 2 and 3.  Compare these to the 

previous distribution plots.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following Q-Q plot scenarios are possible: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable 2 Variable 3 
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Currently, there is no Bayesian equivalent of the Shapiro-Wilk test in JASP to check the assumption of 

normality.  

 

Testing the assumption of normality – A cautionary note! 

For most parametric tests to be reliable, one of the assumptions is that the data is approximately 

normally distributed. A normal distribution peaks in the middle and is symmetrical about the mean. 

However, data does not need to be perfectly normally distributed for the tests to be reliable. 

So, having gone on about testing for normality – is it necessary?   

The Central Limit Theorem states that as the sample size gets larger i.e. >30 data points the 

distribution of the sampling means approaches a normal distribution.  So, the more data points you 

have the more normal the distribution will look and the closer your sample mean approximates the 

population mean. 

However, data that does not meet the assumption of normality is going to result in poor results for 

certain types of test (i.e. ones that state that the assumption must be met!). How closely does your 

data need to be normally distributed? This is a judgment call best made by eyeballing the data. 

WHAT DO I DO IF MY DATA IS REALLY NOT NORMALLY DISTRIBUTED? 

Transform the data and redo the normality checks on the transformed data.  Common transformations 

include taking the log or square root of the data.  

Use non-parametric Bayesian tests since these are distribution-free tests and can be used instead of 

their parametric equivalent.  
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DATA TRANSFORMATION 
In some cases, it may be useful to compute the differences between repeated measures or, to make 

a dataset more normally distributed, you can apply a log transform for example. When a dataset is 

opened there will be a plus sign (+) at the end of the columns. 

 

 

 

 

 

 

 

 

 

 

Clicking on the + opens a small dialogue window where you can: 

 Enter the name of a new variable or the transformed variable 

 Select whether you enter the R code directly or use the commands built into JASP 

 Select what data type is required 

 

 

 

 

 

 

 

 

 

Once you have named the new variable and chose the other options – click create.  
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If you choose the manual option rather than the R code, this opens all the built-in create and transform 

options. Although not obvious, you can scroll the left and right-hand options to see more variables or 

more operators respectively. 

 

 

 

 

 

 

 

 

For example, we want to create a column of data showing the difference between variable 2 and 

variable 3. Once you have entered the column name in the Create Computed Column dialogue 

window, its name will appear in the spreadsheet window. The mathematical operation now needs to 

be defined. In this case drag variable 2 into the equation box, drag the ‘minus’ sign down and then 

drag in variable 3. 

 

If you have made a mistake, i.e. used the wrong variable or operator, remove it by dragging the item 

into the dustbin in the bottom right corner. 
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When you are happy with the equation/operation, click compute column and the data will be entered. 

 

If you decide that you do not want to keep the derived data, you can remove the column by clicking 

the other dustbin icon next to the R. 

Another example is to do a log transformation of the data. In the following case variable 1 has been 

transformed by scrolling the operators on the left and selecting the log10(y) option. Replace the “y” 

with the variable that you want to transform and then click Compute column. When finished, click the 

X to close the dialogue. 
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The two graphs below show the untransformed and the log10 transformed data. The obviously 

skewed data has been transformed into a profile with a more normal distribution 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Export function will also export any new data variables that have been created. 

  

Untransformed 

Log10 transformed 



   

36 | P a g e  
JASP – Bayesian Inference.  Dr Mark Goss-Sampson 

 

BAYESIAN INFERENCE METHODS 
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SOME BAYESIAN TERMINOLOGY3 
Bayesian Statistics  

A statistical tool that can be used to combine background knowledge of population parameters with 

current data to obtain estimates via the resulting posterior distribution. 

 

Bayes Factor 

Evaluates the conditional probability between two competing hypotheses. The aim is to quantify 

support levels for each hypothesis, which can be updated as new information becomes available, 

instead of generating definitive accept or reject hypothesis decisions. 

 

Credibility Interval  

The Bayesian version of the traditional confidence interval. Can be interpreted as the (e.g. 95%) 

probability that the population parameter is between the particular upper and lower bounds 

determined by the Bayesian credibility interval 

 

Likelihood Function 

Represents the observed data likelihood. This weights the prior distribution in Bayesian statistics to 

obtain the posterior distribution from which we draw inferences. 

 

Markov Chain Monte Carlo (MCMC) 

A simulation-based estimation method that is used to make simulated draws from a distribution and 

form a Markov chain that represents the posterior distribution. 

 

Prior distribution 

A statistical distribution that can be used to capture the amount of (un)certainty in a population 

parameter. This distribution is then weighted by the sample data to obtain the posterior, which is used 

to make an inference. 

 

Prior odds 

The odds of the outcome before the evidence is considered. These can be uninformative (assigning 

equal probabilities to all possibilities) or informative based on previous findings/knowledge. 

 

Posterior distribution 

The distribution that is obtained once combining the prior and the likelihood in the Bayesian 

estimation process. 

 

Posterior odds 

Posterior odds = Bayes factor × prior odds. From this formula, we see that the Bayes' factor (BF) tells 

us whether the data provides evidence for or against the hypothesis 

assigns equal probabilities to all possibilities 

                                                           
3 Adapted from Schoot, Rens & Depaoli, Sarah. (2014). Bayesian analyses: Where to start and what to report. 
European Health Psychologist. 16. 75-84. 
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GUIDELINES TO UNDERSTANDING PLOTS IN BAYESIAN ANALYSES 
This section sets out to explain the meaning of the common plots seen in some of the Bayesian 

analyses.  More complex analyses such as Regression and two-way ANOVAs have their own specific 

plots and will be dealt with in their individual sections. 

 

Posterior and Prior Plots – parameter estimation. 

Example plots for a two-sided (H1 ≠ H0) correlation and independent t-test are shown below (left and 

right respectively). These plots provide information for parameter estimation, as well as hypothesis 

testing. 

In each case, the dotted line represents the prior, the probability distribution of the parameter under 

the alternative hypothesis before actually seeing the data.  

For a 2-sided correlation, the default stretched beta distribution states that any correlation coefficient 

(rho: ρ) between -1, and 1 is possible, and is equally likely a priori, hence the uniform distribution. In 

the case of hypothesis testing, the two rival hypotheses tested are H0: ρ = 0 and H1: ρ ≠ 0 (more 

specifically: H: ρ ~ Uniform (-1, 1)). 

For the 2-sided independent t-test, the prior is defined by a Cauchy distribution centred on a zero 

effect size (δ) and a width/scale of .707 (default in JASP). This distribution reflects our beliefs about 

likely values of the population parameter, before seeing the data. The prior distribution depicted 

below reflects the belief that values of the effect size close to 0 are relatively plausible, whereas values 

greater than 1 are less plausible.  

In the case of hypothesis testing, the two rival hypotheses tested are H0: δ = 0 and H1: δ ≠ 0 (more 

specifically, H1: δ ~ Cauchy (0.707)). 

 

The solid lines show the posterior distribution (which is conditional on H1 being true), i.e. the updated 

probability distribution of the parameter of interest after seeing the data. The horizontal bar 

represents the 95% credible intervals around the median correlation or effect size.   
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The two grey dots indicate the density values of the two distributions where the parameter of interest 

is equal to the point of testing (e.g., 0 for the correlation or effect size). The ratio of these two values 

is called the Savage-Dickey density ratio, which gives the BF10 and BF01 values (also shown above), 

depending on which way around the division is done. Visually, if the grey dot of the posterior 

distribution is lower than that of the prior distribution the evidence supports the alternative 

hypothesis and v.v. 

 

Posterior and Prior Plots – hypothesis testing. 

The initial results above are based on two-sided non-directional alternative hypotheses. Bayesian tests 

also enable one-sided directional hypotheses to be tested.  To test the associated one-sided 

hypothesis, you can specify “Correlated positively”, and “Group 1 > Group 2”. The new prior– posterior 

plots are shown below (left and right respectively). 

 

 

Now the prior distribution densities are concentrated to the right of 0 in each case, reflecting the 

directionality of the alternative hypothesis. Both Bayes factors have increased in magnitude, 

compared to the two-sided tests, thus favouring the alternative directional hypotheses (H+). 

 

 

How strong is the evidence?  

Different descriptive classifications have been used to interpret Bayes factors. The one adopted by 

JASP is an adaption of Jeffery’s scheme that proposes a series of labels for which specific Bayes factor 

values can be considered either “anecdotal”, “moderate”, “strong”, “very strong”, or “decisive” 

relative evidence for a hypothesis. 
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BF10 Loge BF10 Evidence In favour of 

>100 >4.6 Decisive Alternative hypothesis 

30 to 100 3.4 to 4.6 Very strong Alternative hypothesis 

10 to 30 2.3 to  3.4 Strong Alternative hypothesis 

3 to 10 1.1 to 2.3 Moderate Alternative hypothesis 

1 to 3 0 to 1.1 Anecdotal Alternative hypothesis 

1 0 No evidence Neither 

1 to  0.33 0 to -1.1 Anecdotal Null Hypothesis 

0.33 to 0.1 -1.1 to -2.3 Moderate Null Hypothesis 

0.1 to 0.033 -2.3 to  -3.4 Strong Null Hypothesis 

0.033 to 0.01 -3.4 to -4.6 Very strong Null Hypothesis 

<0.01 < -4.6 Decisive Null Hypothesis 

 

However, these are merely a simplified heuristic for interpreting Bayes factors, but that the Bayes 

factor really is a continuous metric of evidence. 

 

The pizza plots show the transformed odds of two Bayes factors (between 0 and 1). This allows the 

strength of evidence for each Bayes factor to be easily visualised4.   

                                                           
4 Van Doorn J et al (2019 )  The JASP Guidelines for Conducting and Reporting a Bayesian Analysis. 
https://psyarxiv.com/yqxfr 



   

41 | P a g e  
JASP – Bayesian Inference.  Dr Mark Goss-Sampson 

Bayes factor robustness checks 

Bayes factors are known to be sensitive to how the prior distribution is specified.  For the analysis to 

be “robust”, Bayes factors should be relatively consistent over a range of different prior specifications. 

The robustness analysis for the one-sided correlation analysis is shown below: 

 

 

 

 

 

 

 

 

 

 

For the “positively correlated” alternative hypothesis (BF+0), the robustness analysis computes BF+0 

values for all prior shape parameters between 0 and 2. This shows to what extent the Bayes factor 

fluctuates based on the prior specification. Except for very small prior widths (i.e., very 

extreme/informative prior specifications), there is very little change in BF+0 which consistently 

supports “extreme” evidence for the alternative hypothesis over the null.  

In terms of the Cauchy distribution, if the location is maintained as being centred on 0, changing the 

prior width (scale) changes the shape of the distribution.  An example of this is shown below. Note 

that the default Cauchy prior is set to 0.707. This scale parameter for the Cauchy distribution works as 

follows: 50% of the probability mass is situated between -(scale) and +(scale). For instance, a Cauchy 

distribution with scale = 1.5 will have 50% of its probability mass between -1.5 and 1.5. 
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The robustness test for the one-sided independent t-test is shown below. As can be seen, the Bayes 

factors are calculated over a range of prior width values from 0 to 1.5.  The analysis also provides BF+0 

values over a selection of 4 prior widths (max: maximum attainable Bayes factor, user: user-specified 

prior, wide: width of 1, and ultrawide: 1.4). As with the correlation example, except for very small 

prior widths, the BF+0 values consistently show strong evidence in support of the alternative 

hypothesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sequential Analyses 

The sequential analyses for the correlation and independent t-tests are shown below (left and right 

respectively). This shows the sequential development of the evidence as the data accumulate.  

Sequential analysis is generally only of interest in monitoring the sampling plan in the original research 

design. For example, to either stop collecting data after a set number of trials or when a pre-defined 

Bayes factor is achieved.  
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BAYESIAN ONE SAMPLE T-TEST  
 

Research is normally carried out in sample populations, but how close does the sample reflect the 

whole population? The Bayesian one-sample t-test determines whether a sample mean is the same 

or different from a known or hypothesized population mean. 

 

The 2-sided null hypothesis (Ho) tested is that the effect size (δ) = 0 while the alternative hypothesis 

is that the effect size ≠ 0 

 

ASSUMPTIONS  

Three assumptions are required for a one-sample t-test to provide a valid result: 

 The test variable should be measured on a continuous scale. 

 The test variable data should be independent i.e. no relationship between any of the data 

points.  

 The data should be approximately normally distributed 

 There should be no outliers in the differences between the 2 groups. 

The last two assumptions should be checked by doing a descriptives analysis. 

 

RUNNING THE BAYESIAN ONE SAMPLE T-TEST 

Open One sample t-test.csv, this contains two columns of data representing the height (cm) and body 

masses (kg) of a sample population of males used in a study. In 2017 the average adult male in the UK 

population was 178 cm tall and has a body mass of 83.6 kg. 

 

Go to T-Tests > Bayesian One-Sample t-test and in the first instance add height to the analysis box on 

the right. Then tick the following options and add 178 as the test value:  
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UNDERSTANDING THE OUTPUT 

The output should contain two tables and four graphs. 

 

The results show that the BF10 favouring the alternative hypothesis, that data is not equal to the test 

value, is less than one. Switch the Bayes factor from BF10  to BF01  which will report in favour of the 

null hypothesis. 

 

 

 

 

 

 

 

 

 

 

As BF01  = 4.28, this indicates the null model is 4.28 more favoured than the alternative model, given 

the data. Not only does this provide moderate evidence for H0  relative to H1 — something not 

possible with p-values — but it also describes the magnitude of this evidence. 

If the data is not normally distributed, JASP provides the option to run the Wilcoxon signed-rank test 

instead of the default Student test. 

 

 

 

 

 

 

 

The descriptive data shows that the mean height of the sample population was 177.6 cm compared 

to the average 178 cm UK male. This is shown graphically with the mean ± 95% credible intervals 

below. 
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The posterior – prior plot shows that the posterior distribution is centred very close to an effect size 

of 0 (median = -0.006) with the pizza plot favouring the data under the null rather than the alternative 

hypothesis.  

 

The robustness test also shows evidence in favour of the null hypothesis with a range of prior widths. 

 

Repeat the procedure by replacing height with mass and change the test value to 83.6 and test for the 

alternative hypothesis ≠ test value. 

 

 

 

The Bayes factor is reported as 61312, i.e. the data is 61312 times more likely under the alternative 

hypothesis than the null.  The mean weight of the participants (72.9 kg) is less than the test value 

defined (83.5 kg).   
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Re-run the test changing the alternative hypothesis < test value. 

 

 

 

 

 

 

 

 

 

 

It can now be seen that the Bayes factor extreme evidence in favour of the alternative hypothesis with 

the data being 122,625 times more likely than under the null hypothesis. 

 

 

 

 

 

 

REPORTING THE RESULTS 

A 2-sided Bayesian one-sample t-test comparing the sample population height (177.6 cm) to the UK 

adult norm (178 cm) returns a BF01 of 4.3 indicating moderate evidence in favour of the null 

hypothesis. This means that the data is 4.3 times more likely to have occurred under the null than 

under the alternative hypothesis. 

A one-sided Bayesian one-sample t-test, where H1 is less than the test value, comparing the sample 

population mass (72.9 kg) to the UK adult norm (83.6 kg) returns a BF10 of 122,625 indicating decisive 

evidence in favour of the alternative hypothesis. This means that the data 122,625 times more likely 

to have occurred under the alternative than under the null hypothesis. 

  



   

47 | P a g e  
JASP – Bayesian Inference.  Dr Mark Goss-Sampson 

BAYESIAN BINOMIAL TEST 
 

The binomial test is effectively a non-parametric version of the one-sample t-test for use with 

dichotomous (i.e. yes/no) categorical datasets. This tests whether the sample differs from a known or 

hypothesized population proportion (test value). 

 

The null hypothesis (Ho) postulates that the population proportion is equal to the test value. 

 

The alternative hypotheses that can be tested are: 

 ≠ Test value: Two-sided alternative hypothesis that the population proportion is not equal to 

test value. 

 > Test value: One-sided alternative hypothesis that the population proportion is larger than 

the test value. 

 < Test value: One-sided alternative hypothesis that the population proportion is smaller than 

the test value. 

 

If a one-sided test is requested, the BF10  (or BF01): Bayes factor is denoted as: 

 BF+0: Bayes factor that quantifies evidence for the one-sided alternative hypothesis that the 

population proportion is larger than the test value, relative to the null hypothesis. 

 BF-0: Bayes factor that quantifies evidence for the one-sided alternative hypothesis that the 

population proportion is smaller than the test value, relative to the null hypothesis. 

 BF0+: Bayes factor that quantifies evidence for the null hypothesis, relative to the one-sided 

alternative hypothesis that the population proportion is larger than the test value. 

 BF0-: Bayes factor that quantifies evidence for the null hypothesis, relative to the one-sided 

alternative hypothesis that the population proportion is smaller than the test value. 

 

ASSUMPTIONS  

Three assumptions are required for a binomial test to provide a valid result: 

 The test variable should be on a dichotomous scale (such as yes/no, male/female etc.). 

 The sample responses should be independent  

 

 

RUNNING THE BINOMIAL TEST 

Open Bayesian binomial.csv, this contains one column of data showing the number of students in a 

first-year class using either an iPhone or another smartphone. In August 2019, when comparing 

smartphone ownership in the UK, the market share of the iPhones was 47%.5 

Go to Frequencies >Bayesian Binomial test. Move the Smartphone variable to the data window and 

set the Test value to 0.47 (47%). Also, tick all plot options. 

                                                           
5  https://www.statista.com/statistics/271195/apple-ios-market-share-in-the-united-

kingdom-uk/ 
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The following table and graph show that the proportions of both smartphones were 59% and 41% for 

iPhones and other makes, respectively, in the student cohort compared to the market proportions 

being 47% and 53%. 
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For a 2-sided test, the Bayes factors show that for the iPhone proportion there was insufficient 

evidence to accept or reject the null hypothesis (BF10  = 1.657).  

This can be further visualised in the pizza plots presented with the Prior and Posterior plots. The two 

grey dots indicate the density values of the two distributions at the test value. The ratio of these two 

values is called the Savage-Dickey density ratio, which gives the BF10 and BF01 values (also shown 

above), depending on which way around the division is done. Visually, if the grey dot on the posterior 

distribution is higher than that on the prior distribution the evidence supports the null hypothesis and 

vice versa. 
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ONE-SIDED TESTING. 

This can be followed up with one-sided hypothesis testing i.e. is the proportion of iPhones used in 

class (58.9%) greater than the expected UK market proportion of 47%?  To do so, change the 

alternative hypothesis to > Test value. 

 

 

 

 

 

 

 

 

The results show that there is only moderate evidence in support of the one-sided alternative 

hypothesis that the proportion of student iPhone users is higher than the UK market sales proportion. 

 

 

 

 

 

 

 

 

 

 

 

 

REPORTING THE RESULTS 

The UK market proportion of iPhone and other smartphone users was reported to be 47% and 53% 

respectively. In a cohort of University students (N=90) this proportion was found to be 58.9% and 

41.1%.  

 

Are these young students more susceptible to the glossy Apple marketing machine than the normal 

population? A one-sided Bayesian Binomial test based on the alternative hypothesis that the 

proportion of student iPhone users was higher than in the general population when the market 

proportion was carried out. The resulting BF was 3.09 which only provides anecdotal/moderate 

evidence favouring the alternative hypothesis.  
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BAYESIAN MULTINOMIAL TEST 
 

The multinomial test is effectively an extended version of the Binomial test for use with categorical 

datasets containing three or more factors. This tests whether the sample distribution is different from 

a hypothesized population distribution (multinomial test) or a known distribution (Chi-square 

‘goodness-of-fit’ test). 

 

The null hypothesis (Ho) is that the sample counts are generated by a specified set of population 

proportions.  The alternative hypothesis (H1) is that the sample counts are not generated by those 

population proportions. 

 

ASSUMPTIONS  

Three assumptions are required for a multinomial test to provide a valid result: 

 The test variable should be a categorical scale containing 3 or more factors 

 The sample responses should be independent  

 

RUNNING THE MULTINOMIAL TEST 

Open Bayesian Multinomial.csv. This contains three columns of data including the number of 

different coloured M&Ms counted in a total of five bags (observed).  Without any prior knowledge, it 

could be assumed that the different coloured M&Ms are equally distributed. Therefore, the priors are 

all set to be equal i.e. 1. 

 

Go to Frequencies > Bayesian Multinomial test. Move colour of the M&Ms to Factor and the observed 

number of M&Ms to counts. Tick Descriptives and Descriptives Plots. 
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As can be seen in the Descriptive table, the test assumes an equal expectation for the proportions of 

coloured M&Ms (36 of each colour).  The Multinomial test results show a BF10 of 2512 suggesting that 

the data are 2512 times more likely under the alternative hypothesis than the null hypothesis. 

 

Use the Display options to switch 

between either counts or proportions 

  

  

 

 

In 2008, Mars, the manufacturers of M&Ms changed the colour distribution to the following. 

 

Colour Blue Brown Green Orange Red Yellow 

Proportion 24 13 16 20 13 14 

 

Sometime later, the proportions were removed from the manufactures web site and have not been 

restored since.   These last published values will now be used as the expected counts, so move the 

Expected variable to the Expected Counts box. As can be seen in the Descriptives table, JASP has 

calculated the expected numbers of the different coloured M&Ms based on the manufacturers 

reported production ratio.   The results of the test result in a BF10 of 4.3 * 1010 and provide decisive 

evidence in favour of the alternative hypothesis where the observed counts of M&Ms are not 

generated by the last proportions stated by the manufacturer. 
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MULTIPLE HYPOTHESES 

JASP also provides another option whereby different hypotheses can be run at the same time. Go back 

to the Options window and only add Colour to the Factor and Observed to the Counts boxes, remove 

the expected counts if the variable is still there. In Test values, tick Expected proportions. This will 

open a small spreadsheet window showing the colour and Ho (a) with each cell have 1 in it. This is 

assuming that the proportions of each colour are equal (multinomial test). 

 

In this window, add another column which will automatically be labelled Ho (b). The expected 

proportions of each colour can now be typed in. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now when the analysis is run, the results of the tests for the two hypotheses are shown. Ho (a) is the 

null hypothesis that the population counts are equal, while Ho (b) is the null hypothesis that the 

population counts are the same as those specified by the manufacturer. As can be seen, the Bayes 

factors reject both null hypotheses decisively. 
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BAYESIAN INDEPENDENT SAMPLES T-TEST  
 

Like its frequentist counterpart, the Bayesian Independent t-test test is used to determine if there is a 

difference between two independent groups. The test requires a continuous dependent variable (i.e.  

weight loss following a 4-week diet) and an independent variable comprising 2 groups (i.e. males and 

females).  The two hypotheses tested are: 

H0: males and females have similar weight loss (i.e. effect sizes for each group are equal (δ = 0)) 

H1: males and females have different weight loss (i.e. effect sizes for each group are not equal 

(δ ≠ 0)) 

 

ASSUMPTIONS 

Group independence: 

Both groups must be independent of each other. Each participant will provide one data point for one 

group only. For example, participant 1 can only be in either a male or female group – not both. 

 

Normality of the dependent variable: 

The dependent variable should also be measured on a continuous scale and be approximately 

normally distributed with no outliers. This can be checked visually using the Q-Q plots.  

If normality is violated you can try transforming the data (for example log values, square root values) 

or, and if the group sizes are very different, use the Mann-Whitney U test which is a non-parametric 

equivalent that does not require the assumption of normality (see the end of this chapter). 

 

Homogeneity of variance: 

The variances of the dependent variable should be equal in each group. This can be tested using 

Levene's Test of Equality of Variances. 

  

Open Bayesian Independent t-test.csv into JASP.  Go to Descriptives and look at Weight loss split by 

gender. Check for outliers and normal distribution (Shapiro-Wilk).  In this case, the data looks like the 

assumptions have been met. 
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RUNNING THE ANALYSIS 

 

Go to T-Tests > Bayesian Independent Samples t-test. Move the weight loss variable into the 

dependent variable and Gender into the Grouping variable on the right.  In the first instance, tick 

 the hypothesis to be the alternative hypothesis (Group 1 ≠ Group 2) 

 BF10 

 Descriptives 

 Descriptive plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNDERSTANDING THE OUTPUT 

The tables below show the Bayes factors for both BF10 and Log BF10. 

 

The BF10 value is the ratio of the 
Likelihood of data given the alternative hypothesis ()

Likelihood of data given the null hypothesis ()
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In this case, the data are 442346 times more likely under the alternative hypothesis (H1) than the null 

hypothesis. The error % is based on the accuracy of the Bayes factor calculations, if this is less than 

10% this can be ignored. Using Jeffrey’s criterion, this is decisive evidence in favour of the alternative 

hypothesis although the Bayes factor is non-directional (unlike the t statistic) in that it does not show 

how they differ.   

This can be seen in the Descriptives table where weight loss is higher in females compared to males.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FURTHER CHECKS 

Go back to the statistical options and tick all the Prior and Posterior, as well as the Bayes factor 

robustness check options:  
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The dashed line shows the prior distribution and the solid line the posterior distribution (based on the 

dataset). The posterior distribution is shifted to the right over large positive effect sizes.  Each of the 

distributions has a grey dot at the 0.0 effect size. If the dot on the prior distribution is higher than the 

one on the posterior distribution, then the Bayes factor supports the alternative hypothesis. 

 

 

 

 

 

 

 

Bayes factors supporting the alternative / null hypothesis (BF10) and null/alternative hypothesis (BF01).  

The pizza plot distribution shows the proportion of evidence for the H1 (red) and H0 (white) hypothesis.  

In this example, the pizza plot is completely red. The median effect size of 1.258 and 95% credible 

intervals are also shown. 
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The width (uncertainty) of the prior distribution is set as 0.707 by default in JASP.  This graph shows a 

range of prior widths, which in this case are relatively consistent and do not greatly change the BF10 

value with all values being over 100.  Therefore, it can be concluded that this test is robust to changes 

in the prior width. 

 

REFINING THE HYPOTHESIS TESTING 

The descriptive data show that females exhibit greater weight loss than males, the analysis can, 

therefore, be re-run but now selecting the alternative hypothesis Group 1 (females) > group 2 (males). 

 

 

This shows that the evidence for this one-sided alternative hypothesis (BF+0) is now 884,693 times 

more likely than under the null hypothesis.  The error% is reported a NaN since the error is incredibly 

small. 

 
The prior and posterior graph now shows the one-sided prior with all its weight on the positive effect 

size side. 
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REPORTING THE RESULTS 

Following a 4-week diet, females lost on average 6.93 kg compared to males who lost 3.72 kg. A two-

sided analysis revealed a Bayes factor (BF10) that the data were 442346 times more likely under the 

alternative than the null hypothesis.  A subsequent one-sided test based on the alternative positive 

directional hypothesis that females lost more weight than males (BF+0) resulted in a Bayes factor 

indicating that the data were 884,692 times more likely under this directional alternative hypothesis 

than the null with a median effect size of 1.26. 

 

 

BAYESIAN MANN-WHITNEY TEST 
JASP has an option to run a Mann-Whitney test for nominal or non-normally distributed data as an 

alternative to the Student T-test. 

 

 

 

 

 

 

The first thing to notice is that the analysis takes longer than when running the Student T-test. 

Secondly, if the analysis is repeated on the same data, although the W statistic is the same, the BF is 

usually quite different.  Below is the output for 3 analyses of the same data: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following explanation has been paraphrased from the JASP forum 

“The underlying algorithm introduces some degree of variation ………… it runs multiple chains and 

bases the Bayes factor off that.   

This variation is especially prevalent when there is either a low sample size or a low number of MCMC-

samples. For now, maybe it helps to increase that number to the maximum.” 

 

I have found a more stable repeated BF by increasing the number of samples/ iterations from 1000 to 

10,000. 
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THE BAYESIAN PAIRED SAMPLES T-TEST 
 

This test, like, the classical parametric paired-samples t-test compares the means between two related 

groups on the same continuous, dependent variable. For example, looking at weight loss pre and post 

2 weeks jogging programme. The two-sided version of this test compares two hypotheses for effect 

size δ: 

H0:  the null hypothesis - that the effect size is absent (i.e., δ = 0) 

H1: the alternative hypothesis   - that the effect size δ ≠ 0 

 

ASSUMPTIONS  

Four assumptions are required for a paired t-test to provide a valid result: 

1. The dependent variable should be measured on a continuous scale. 

2. The independent variable should consist of 2 categorical related/matched groups, i.e. each 

participant is matched in both groups 

3. The differences between the matched pairs should be approximately normally distributed 

4. There should be no outliers in the differences between the 2 groups. 

 

Open Bayesian paired t-test.csv into JASP. As a matter of good practice check the data using the 

Descriptives analysis. As can be seen, there are no outliers so assumption 4 is fine. 

 

 

 

To check the normality of the paired differences, go to the spreadsheet view and click on the black 

cross in the column header row to add a computed column. Name the new column “difference” and 

make sure that it is a Scale variable.  In the dialogue box drag pre-training mass to the main box, click 

on the minus sign and drag over the post-training mass then click Compute column. 
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Now in Descriptives, the difference column can be used to check for data normality using Shapiro-

Wilk. In this case, assumption 3 has not been violated since Shapiro-Wilk is not significant. 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE: To date, a non-parametric version (i.e. Wilcoxon’s test) of a Bayesian paired samples t-test has 

not been implemented in JASP 0.10.2 but will be added soon. 

 

RUNNING THE ANALYSIS 

Go to T-Tests > Bayesian Paired Samples t-test. Move the paired variables into the analysis box on the 

right.  In the first instance, tick 

 the alternative hypothesis to be Measure 1 ≠ Measure 2 

 BF10 

 Descriptives 

 Plots - Descriptive  
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UNDERSTANDING THE OUTPUT 

The output should consist of two tables and one graph. 

 

 

 

 

 

 

 

 

The BF10 value is the ratio of the 
Likelihood of data given the alternative hypothesis ()

Likelihood of data given the null hypothesis ()
    

 

 

in this case, the alternative hypothesis (H1) is 7.26 times more likely than the null hypothesis.  Using 

Jeffrey’s criterion, this is moderate evidence in favour of the alternative hypothesis.   
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The error % is based on the accuracy of the Bayes factor calculations, if this is less than 10% this can 

be ignored. Although there is moderate evidence for a difference between the two groups the Bayes 

factor does not show in which direction they differ.   

This can be seen in the Descriptives table where body mass is lower 2 weeks post-training with a mean 

difference of 2.13 kg. The descriptives plot shows the mean values and their ‘credible intervals’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FURTHER CHECKS 

Go back to the statistical options and tick all the other available Plots options which will result in 3 

more graphs: 
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The dashed line shows the prior distribution and the solid line the posterior distribution (based on the 

dataset). The posterior distribution is shifted to the right over positive effect sizes.  Each of the 

distributions has a grey dot at the 0.0 effect size. If the dot on the prior distribution is higher than the 

one on the posterior distribution, then the Bayes factor supports the alternative hypothesis.   

Bayes factors supporting the alternative/null hypothesis (BF10) and null/alternative hypothesis (BF01).  

The pizza plot distribution shows the proportion of evidence for the H1 (red) and H0 (white) hypothesis.  

In this example, the pizza plot is predominantly red. The median effect size and 95% credible intervals 

are also shown. 

 

Robustness relates to the strength of the model and is used when the data are collected from a wide 

range of probability distributions that are largely unaffected by outliers or small violations of model 

assumptions.  

The width (uncertainty) of the prior distribution is set as 0.707 by default in JASP.  This graph shows a 

range of prior widths, which in this case are relatively consistent and do not greatly change the BF10 

value.  Therefore, it can be concluded that this test is robust to changes in the prior width. 
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The sequential plot shows how the Bayes factor changes after every data point are added with the 

BF10 fluctuating between anecdotal and moderate evidence in support of the alternative hypothesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFINING THE HYPOTHESIS TESTING 

The descriptive data show that the group had lower body mass after 2 weeks jogging exercise, the 

analysis can, therefore, be re-run but now selecting the directional alternative hypothesis Measure 1 

(pre-training) > Measure 2 (post-training). 

  

 

 

Based on the interpretation of the posterior probability having seen the data, the one-sided 

alternative hypothesis (BF+0) is now 14.43 times more likely than under the null hypothesis.    

 

The prior and posterior graph now shows the one-sided prior with all its weight on the positive effect 

size side. 
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REPORTING THE RESULTS 

Following 2 weeks of jogging training, the study group lost on average 2.13 kg (pre-training: 65.4 ± 5,4 

kg, Post Training: 63.25 ± 6.16 kg). A two-sided analysis revealed a Bayes factor (BF10) suggesting that 

the data were 7.2 times more likely under the alternative than the null hypothesis.  A subsequent one-

sided test based on the alternative positive directional hypothesis that body mass post-training was 

less than pre-training (BF+0) resulted in a Bayes factor indicating that the data were 14.43 times more 

likely under this directional alternative hypothesis than the null with a median effect size of 0.63. 
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BAYESIAN CORRELATION 
 

Correlation is a statistical technique that can be used to determine if, and how strongly, pairs of 

variables are associated.  Correlation is only appropriate for quantifiable data in which numbers are 

meaningful such as continuous or ordinal data. As in frequentist correlation both parametric 

(Pearson’s) and non-parametric (Kendall’s tau) correlation coefficients are reported. However, p 

values and confidence intervals are replaced by Bayes factors (BF) and credible intervals.  

 

The test assesses whether the data are more likely to occur under the null hypothesis (H0) 

i.e. that there is no linear association between the two variables), or under the alternative 

hypothesis (H1 i.e. there is an association between the two variables). Then, after observing the 

data, Bayes’ theorem is applied to obtain the posterior probability of both hypotheses. 

 

ASSUMPTIONS 

Four assumptions are required for a correlation to provide a valid result: 

1. The two variables should be measured on a continuous scale. 

2. There is a linear relationship between the two variables  

3. The data should be approximately normally distributed (can use Kendall’s tau-b option if this 

assumption not met) 

4. There should be no outliers in the 2 variables. 

 

RUNNING THE BAYESIAN CORRELATION  

Open Bayesian correlation.csv in JASP.  This contains real data comprising a series of variables that 

can be measured during a golf drive: 

 

Variables: 

 Shot score (best value = 100, lowest = 0) 

 Ball speed (m/s) 

 Launch angle (degrees) 

 Backspin (rpm) 

 Distance (m) 

 

Run a descriptive analysis to check for data normality and the presence of any outliers. In this case, 

none of the variables shows a deviation from normality (see Q-Q plots) 

 

 

 

 

 

 

 

 

 

Go 

to Regression > Bayesian correlation. Move all variables into the analysis box on the right.  
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In the statistics options, tick 

 Pearson’s rho (or Kendall’s tau if data is not normally distributed) 

 Alternative hypothesis = correlated 

 BF10 

 (will present the Bayes factor in favour of the alternative hypothesis) 

 Report Bayes factors 

 Flag supported correlations 

Plots – Correlation matrix and posteriors under H1 

A stretched beta prior width of 1 is set by default i.e. all correlations between -1 and +1 are given an 

equal prior probability.  
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UNDERSTANDING THE OUTPUT 

The Bayesian Pearson correlation matrix is shown below as is the normal frequentist Pearson 

correlation matrix for comparison.  

As can be seen, both the Bayesian and frequentist analysis report the same Pearson’s r-values.  

Nonetheless, with p-values, it cannot be certain if non-significance is due to data insensitivity or 

evidence supporting a lack of relationship between these two variables. 

 

Whereas Pearson’s correlation flags significant correlations for ball speed, launch angle, backspin with 

the distance the BF10 value for distance and Launch angle is only 7.124 suggesting that there is only 

moderate evidence for a correlation between the two.  Bayesian correlation between shot score and 

ball speed/launch angle report low BF values in the anecdotal evidence range whereas they are 

flagged as significant in the conventional correlation test. This suggests that the Bayesian approach is 

more conservative and only flags significance when the evidence is strong i.e. BF>10. 
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The Bayes factors report very strong evidence in favour of the alternative hypothesis (i.e. a 

relationship between variables) for distance with shot score (BF10= 326), ball speed BF10 = 84.5 and 

Backspin (BF10=33.95). So, for example, it is 326 times more likely that distance and ball speed are 

related than not. Based on the posterior probability the data are 326 times more likely under H0 than 

under H1.   There was only moderate evidence for distance and launch angle (BF10 =7.12) 

 

The correlations and posteriors under H1 are plotted together. The posterior distributions are plotted 

on a horizontal scale centred on a correlation coefficient of ρ= 0. It can be seen that posteriors relating 

to negative correlations are weighted to the left of 0 and positive ones to the right of 0. 
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BAYESIAN CORRELATION PAIRS OPTION 
The correlation between distance with ball speed and launch angle were both reported as having 

positive r-values in the correlation matrix with only distance and ball speed being marked as supported 

correlations. Therefore, correlations with a directional alternative hypothesis (correlated positively) 

can be run. 

 

Return to the analysis options and remove the variables just keeping distance, launch angle and ball 

speed. 

 Alt hypothesis: Correlated positively 

 Display pairwise table 

 Report Bayes factors 

 

Open up the Plot Individual Pairs tab, Add the values pairwise to the right box.  Then tick all the options 

as shown below:  
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UNDERSTANDING THE OUTPUT 

 

This method now produces a table of pairwise correlations instead of the correlation matrix. The 

reported r-values are the same, however, the Bayes factors are different. There is very strong evidence 

(168 times more likely) supporting a positive correlation between ball speed and distance i.e. the 

alternative hypothesis. 

 

Whereas in the 2-sided correlation matrix there was only anecdotal /moderate evidence in support 

of a correlation between launch angle and distance, now there is strong evidence in support of the 

alternative positive correlation (BF10 = 14). 

 

 

 

 

 

 

 

 

 

 

 

The posterior-prior plot for distance and ball speed, assuming a positive correlation, show the data 

fully distributed to the right of rho = 0, with a median value of 0.58 as was indicated by the large Bayes 

factor.  

 

The dashed line shows the uniform prior distribution and the solid line the posterior distribution 

(based on the dataset).  Each of the distributions has a grey dot at the 0.0 effect size. If the dot on the 

prior distribution is higher than the one on the posterior distribution, then the Bayes factor is more 

supportive of the alternative hypothesis. 

 

The robustness analysis allows one to inspect what BF would be obtained if the alternative model 

were specified differently. The analysis shows the outcomes of specifying a range of different prior 

values from 0 to 2.   
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The prior width is set as 1.0 by default in JASP. If the results are insensitive to changes in the prior 

width the Bayes factor should be stable.  Except for very small prior widths, the Bayes factors are 

relatively stable therefore confirming the robustness of the analysis. 

A similar picture is shown below when correlating launch angle with distance. 

 

 

 

 

 

 

REPORTING THE RESULTS 

Using a one-sided alternative hypothesis there was a positive correlation for distance with respect to 

ball speed (r = 0.620) this was accompanied by a Bayes factor BF10 = 169 indicating a decisive likelihood 

(“evidence”) of this occurring under the H1 than H0. 

Using a one-sided alternative hypothesis there was a positive correlation for distance with respect to 

the launch angle (r = 0.495) this was accompanied by a Bayes factor BF10 = 14.2 indicating a strong 

likelihood (“evidence”) of this occurring under the H1 than H0. 
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BAYESIAN REGRESSION ANALYSIS  
 

Both linear regression and Bayesian regression can be used for predictive analysis, i.e. to predict a 

dependent outcome variable from one (simple regression) or more (multiple regression) independent 

predictor variables. 

 

Simple regression results in a hypothetical model of the relationship between the outcome and 

predictor variable(s).  The model used is a linear one defined by the formula: 

 
Simple regression 

 

 

y = b0 + b1*x1       + b2*x2 + b3*x3 +… bn*xn 

 

 

 

Multiple regression 

 

 y = estimated dependent outcome variable score,  

 b0 = constant (intercept),  

 b1 = regression coefficient(s) (slope)and  

 x = score on the independent predictor variable (s) 

 

NOTE: Linear regression provides both the constant and regression coefficient(s). Bayesian 

regression also provides these but in a slightly different way in that, the constant is centred on the 

mean value of the outcome variable. 

 

Regression tests the following hypotheses 

Ho: that there will be no prediction of the dependent (outcome) variable by the predictor 

variable(s). 

H1: H1 ≠ Ho 

 

 

ASSUMPTIONS 

1. Linear relationship: important to check for outliers since linear regression is sensitive to their 

effects. 

2. Independence of variables 

3. Multivariate normality: requires all variables to be normally distributed 

4. Homoscedasticity: homogeneity of variance of the residuals 

5. Minimal multicollinearity /autocorrelation: when the independent variables/residuals are too 

highly correlated with each other. 
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SIMPLE BAYESIAN REGRESSION 
Regression compares the data to two hypotheses, the null hypothesis (Ho) that there will be no 

prediction of the dependent (outcome) variable by the predictor variable(s) against an alternative 

hypothesis (H1) that does include predictor(s). 

 

Open Bayesian regression.csv.  This data set contains rugby kick data including distance (feet) kicked, 

right/left leg strength and flexibility and bilateral leg strength.   Firstly, go to Descriptives > Descriptive 

statistics and check the boxplots for any outliers. In this case, there should be none, though it is good 

practice to check. 

 

For this simple regression go to Regression > Bayesian Linear regression and put distance into the 

Dependent Variable (outcome) and R_Strength into the Covariates (Predictor) box. Tick the following 

options in the Statistics options: 

 

 BF10 (Bayes factor favouring the alternative hypothesis over the null hypothesis) 

 Compare to the null model 

 Posterior summary – across all models 

 Descriptives 
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UNDERSTANDING THE OUTPUT 

 

You will now get the following outputs:  

 

 

 

 

 

 

 

 

P(M) = prior model probability.  Since there are only two models the prior probability of each model 

is assigned an uninformed prior where both models have equal probabilities P(M) = 0.5.  

 

P(M I data) is the probability of the posterior distribution having taken into account the data which 

can be seen as having gone from 50 to 95.4% probability in the model containing right leg strength. 

 

BFM shows how much the model has improved after seeing the data. 

 

The BF10 value (20.728) suggests that there is strong evidence for the alternative model containing 

right leg strength compared to the null model.  However, the R2 value suggests that right leg strength 

alone only accounts for 61.4% variance in the model. 

 

 

 

 

 

 

This table gives the coefficients that can be put into the linear equation. 

y = b0 + b1*x1  

    

y = estimated dependent outcome variable score,  

b0 = constant (intercept), 

b1 = regression coefficient (R_strength)  

x1= score difference for the independent predictor variable (= x – mean x) 
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The prediction equation is therefore slightly different from the one used in normal linear regression. 

For example, for a leg strength of 77 kg, the distance kicked can be predicted by the following -

remember x1 the score difference for the independent predictor variable (= x – mean x): 

 

        ( x – mean x) 

 

   

  Distance = 486.077 + (5.479 * [77 – 66.769]) = 543.7 feet 

 

 

FURTHER CHECKS 

In the analysis menu, under plots, now tick Q-Q plot of model-averaged residuals. The Q-Q plot shows 

that the standardized residuals fit fairly well along the diagonal suggesting that both assumptions or 

normality and linearity have also not been violated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REPORTING THE RESULTS 

 

A simple Bayesian regression was carried out using right leg strength as a predictor of rugby kicking 

distance. An uninformed uniform prior [P(M)] of 0.5 was set for each possible model. There was strong 

evidence for a regression model including right leg strength (BF10 = 20.73) compared to the null model. 

It is suggested that the Model Comparison and Posterior summaries of coefficients tables are also 

shown along with the regression equation. 
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MULTIPLE REGRESSION 
 

The model used is still a linear one defined by the formula: 

y = b0 + b1*x 

 y = estimated dependent outcome variable score,  

 c = constant,  

 b = regression coefficient and  

 x = score on the independent predictor variable 

However, we now have more than 1 regression coefficient and predictor score i.e. 

 

y = b0 + b1*x1 + b2*x2 + b3*x3 …….. bn*xn   

 

RUNNING MULTIPLE BAYESIAN REGRESSION 

 

Open Bayesian regression.csv. that we used for simple regression. Go to Regression > Bayesian linear 

regression and put distance into the Dependent Variable (outcome) and now add R_strength, 

R_flexibility and Bilateral strength to the Covariates (Predictor) box.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the statistical analysis options use the same options as used in the simple regression example. 
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In Advanced Options, under Model Prior, select Uniform which will assign equal prior probabilities for 

each possible model. 

 

 

UNDERSTANDING THE OUTPUT 

 

You will now get the following outputs:  
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P(M) = prior model probability; P(M|data) = posterior model probability; BF_M = change from prior 

model odds to posterior model odds; BF10 = Bayes factor for each row (model) against the one on top 

(this is why the first BF = 1). 

JASP models all possible predictor permutations and in this case,  there are 8 possible models each of 

which has been assigned an equal uninformed prior i.e. each model has a probability of 0.125. 

The largest posterior probability P(M I Data) and BFM increases are seen in model 2 where R_strength 

and Bilateral Strength are used as predictors. This is associated with the largest BF10 

value of 63.86 which is very strong evidence for the alternative hypothesis (model). This is defined as 

the best model. 

The R2 value states that this can account for 78.2% of the variance in the model compared to the 61.4% 

seen in the simple regression model.  Just to note, however, model 5 has a higher R2 value. 

 

In cases where there are many possible alternative models, it may be easier to change the Bayes factor 

to BF01 and Compare to the best model in the options. 

 

 
Here the model containing right leg strength and bilateral strength has been selected as the best 

model (with a Bayes factor of 1). The BF01 i.e. favouring the null model allows comparison of the other 

models with the best one. For example, the best model is favoured 3 times more than one just 

including right leg strength and 64 times more than the null model. 

 

The coefficients are shown for all the covariates included in the analysis: 

 

 
My personal preference is to rerun the analysis using just the best model covariates and use those 

criteria. 
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CONSTRUCTING THE REGRESSION EQUATION 

 

Now there is one constant (b0) and two regression coefficients (b1 and b2). These coefficients can be 

put into the linear equation. 

y = b0 + b1*x1 + b2*x2 

   y = estimated dependent outcome variable score,  

c = constant (mean value of the outcome variable) 

b1 = regression coefficient (R_strength)  

b2 = regression coefficient for Bilateral strength 

x1 = score difference for the R-strength variable (= x – mean x) 

x2= score difference for the Bilateral strength variable (= x – mean x) 

 

 

For right leg strength of 77kg and bilateral leg strength of 121 kg, the predicted kick distance from 

the regression equation will be: 

 

Distance = 486.077 + (2.973 * [77 – 66.769]) + (1.648 * [121 – 88.846]) = 578 feet 
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ADDITIONAL PLOTS 

 

Tick the following options in Plots: 

 

 

The first plot just enables each possible model to be visualised. The coloured squares are the included 

covariates (the null model being purple). Here the best model (ranked 1) includes the intercept, right 

leg and bilateral leg strength since it has the highest Log posterior odds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The next graph shows how close each covariate is to the cut-off prior inclusion probabilities. Right leg 

flexibility is very close to this cut-off point and was not included in the best model. 
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The Q-Q plot shows that the standardized residuals fit fairly well along the diagonal suggesting that 

both assumptions or normality and linearity have also not been violated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REPORTING THE RESULTS 

A Bayesian multiple regression was carried out using right leg flexibility, right and bilateral leg strength, 

as predictors of rugby kicking distance. An uninformed uniform prior [P(M)] of 0.125 was set for each 

of the possible 8 models. There was strong evidence for a regression model including the right leg and 

bilateral leg strength (BF10 = 63.9) compared to the null model. 

It is suggested that the Model Comparison and Posterior summaries of coefficients tables are also 

shown along with the regression equation. 
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BAYESIAN ANOVA 
 

Whereas t-tests compare the means of two groups/conditions, one-way analysis of variance (ANOVA) 

compares the means of 3 or more groups/conditions. The Bayesian approach compares the predictive 

performance of different models. JASP features Bayesian versions of the between subjects, repeated 

measures, and mixed ANOVAs.  

 

In these analyses, the following models are compared: 

 

H0 – Null hypothesis: predicts the overall mean  

H1 – Alternate hypothesis: predicts the means of the different levels of the fixed factor. 

 

If the alternative hypothesis model outperforms the null model, this is an indication that the 

dependent variable differs between the levels of the independent variable. However, this does not 

say between which specific levels these differences occur.  To determine where the group differences 

are, post hoc (From the Latin post hoc, "after this") tests can be conducted. 

 

ASSUMPTIONS  

1. The independent variable must be categorical, and the dependent variable must be 

continuous. 

2. The groups should be independent of each other. 

3. The dependent variable should be continuous and approximately normally distributed. 

4. There should be no outliers. 

5. There should be homogeneity of variance between the groups. The first 2 assumptions are 

usually controlled using an appropriate research method design. 

 

RUNNING THE BAYESIAN ANOVA 

Load Bayesian Independent ANOVA.csv. This contains data showing blood cholesterol levels (mmol/L) 

in a control group and two groups taking different statin drugs. For good practice check the descriptive 

statistics and the boxplots for any extreme outliers. 

 

 

 

 

 

 

 

 

 

 

 

There is no evidence that the response variable is consistently non-normal across all populations - 

each boxplot is approximately symmetrical. No extreme outliers are observed. There is no evidence 

that variance, as estimated by the height of the boxplots, differs between the groups. 

 

https://en.wikipedia.org/wiki/Latin_language
https://en.wikipedia.org/wiki/Post_hoc_(disambiguation)


   

86 | P a g e  
JASP – Bayesian Inference.  Dr Mark Goss-Sampson 

NOTE: When running the ANOVA analysis using the included dataset the results are likely to be very 

slightly different to the ones in this presented chapter. This is because the analyses are based on 

numerical algorithms like Markov chain Monte Carlo (MCMC). The degree to which the results 

fluctuate is quantified by an error percentage. The higher the error percentage, the higher the 

fluctuation of the results. 

 

Go to ANOVA > Bayesian ANOVA, put Cholesterol into the Dependent Variable and the treatment 

groupings into the Fixed Factors box.   

 

 

 

 

 

 

 

 

 

 

 

 

 

In the main analyses options 

 Change the Order option to ‘Compare to the null model. 

 Plots – Q-Q plot of residuals 

This will initially result in one table and one graph. 

 

 

UNDERSTANDING THE OUTPUT 

Firstly, it is important to test the assumption of normality, in this case, that the residuals are normally 

distributed. This can easily be done by looking at the Q-Q plot (below left). If the residuals are normally 

distributed, they should lie consistently along the diagonal line. Any obvious deviations along the line 

(as seen below on the right) would suggest that the assumption of normality has been violated. 
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The following table compares the competing models: 

 

 

 

 

 

 

 

Models: shows the two models tested, null and treatment. The null model is shown first. 

 

P(M):   for the ANOVA, the analysis sets the prior probabilities of each model to be equal (i.e., 

prior model odds of 0.5) 

 

P(M │data): shows the updated probabilities having now seen the data (i.e., posterior model 

probabilities).  

 

BFM:  shows how much the data have changed the prior model odds 

 

BF10: shows the Bayes factors for each model.  The first entry is always 1 since the null 

model is compared against itself.   The BF10 for treatment, 546 suggests that the data 

are 546 times more likely under the model incorporating treatment, than under the 

null model.  

 

Error %: is very small, 0.01%, indicating that the sensitivity to numerical fluctuations is 

minuscule.  

 

If the evidence suggested that the data is best predicted by the null model or that the evidence for 

the alternative was inconsequential. Although evidence for a lack of an effect is still information – 

there is no point in following up with further analyses. 

 

FURTHER ANALYSIS 

Select the following options for further analysis. 

In the main analysis options: 

 Tables – Descriptives 

 Plots – Model averaged posteriors – Group levels in a single plot 

Add treatment to Post hoc tests  

Add Treatment to the horizontal axis in Descriptive plots and display credible intervals 
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The descriptives and plot show that both drug groups have lower cholesterol than the control group. 

 

 

The model-averaged posterior distributions (horizontal bars show the 95% credible intervals around 

the median) are shown below. There is a clear difference between the two drug groups compared to 

the control group.  
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Bayesian post hoc testing is based on pairwise comparisons using Bayesian t-tests. As in frequentist 

analyses, multiple t-tests will increase familywise error. In JASP, methods are used to correct for 

multiplicity based on adjusting the prior odds. The post hoc comparisons are shown in the table below. 

The relative plausibility of each model is specified by the prior odds. If the odds are <1, there is some 

prior belief that there is no difference. The posterior odds are the result of multiplying the prior odds 

by the BF and represent the relative plausibility of the models after observing data. 

 

 

 

 

 

 

 

Comparison of Drug A to the control: the posterior odds suggest that the alternative hypothesis (H1) 

is 467 times more likely than the null hypothesis (H0).  The update from prior to posterior odds can 

be described as decisive evidence in favour of H1. 

Comparison of Drug B to the control:  the posterior odds suggest that the alternative hypothesis (H1) 

is 10.6 times more likely than the null hypothesis (H0).  The update from prior to posterior odds can 

be described as strong evidence in favour of H1. 

Comparison of Drug B to Drug C: the posterior odds suggest that the null hypothesis (H0) is 3.4 (1 / 

0.295) times more likely than the null hypothesis (H1).  The update from prior to posterior odds can 

be described as moderate evidence in favour of H0. 

 

REPORTING THE RESULTS 

The Bayesian one-way ANOVA indicates that the data were 540 times more likely to occur under the 

model including the effect for treatment, compared to the model without the effect. In order to follow 

up on this result, we compared each level of the dependent variable.  The cholesterol levels on drug 

A and drug B were 5.35 and 6.04 mmol/L respectively compared to the control group (9.79 mmol/l). 

Post hoc comparisons of Control .vs. Drug A and Control .vs. Drug B revealed posterior odds of 467 

and 10.5, which indicates decisive and strong evidence respectively in favour of the alternative 

hypothesis, that is,  a reduction in cholesterol levels.          
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BAYESIAN REPEATED MEASURES ANOVA 
 

The Bayesian one-way repeated measures ANOVA (RM ANOVA) is used to assess if there is a 

difference in means between 3 or more groups, featuring the same set of participants tested multiple 

times or under different conditions. Such a research design, for example, could be that the same 

participants were tested for an outcome measure at 1, 2, and 3 weeks or that the outcome was tested 

under conditions 1, 2, and 3 (i.e., within each subject).  

The independent variable should be categorical and the dependent variable needs to be a continuous 

measure. In this analysis, the independent categories are termed levels (i.e., these are the related 

groups). So, in the case where an outcome was measured at weeks 1, 2, and 3, the 3 levels would be 

week 1, week 2, and week 3. 

The models under consideration are 

H0: the null model, where there are no differences between the levels: i.e., no effect (δ=0) 

H1 the alternative model, where there are differences between the levels: i.e., there is an effect 

(δ≠0) 

 

ASSUMPTIONS  

The RM ANOVA makes the following assumptions: 

 The dependent variable and residual should be approximately normally distributed. 

 There should be no outliers. 

 Homogeneity of variances across the factor levels. 

 

RUNNING THE BAYESIAN ANOVA 

 

Load Bayesian RMANOVA.csv. This contains data showing creatine kinase (CK) levels (mmol/L) in 

blood taken over days 1, 3, and 5 following a muscle damage protocol. For good practice, check the 

descriptive statistics and the boxplots for any extreme outliers.  It can be seen that there are no 

outliers. 

 

NOTE: When running the ANOVA analysis using the included dataset the results are likely to be very 

slightly different to the ones in this presented chapter. This is because the analyses are based on 

numerical algorithms like Markov chain Monte Carlo (MCMC). The degree to which the results 

fluctuate is quantified by an error percentage. The higher the error percentage, the higher the 

fluctuation of the results. 

 

Go to ANOVA > Bayesian Repeated Measures ANOVA. In Repeated measures factors, define the 

RMFactor 1 as Time and add days 1, 3, and 5 as levels. Then add the appropriate variables to the 

Repeated Measures cells. 
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In the main options add the following: 

 Order - ‘Compare to null model’ 

 Tables – Descriptives 

 Plots – Q-Q plots of residuals 

In descriptive plots add Time to the horizontal axis 

 

UNDERSTANDING THE OUTPUT 

Firstly, it is important to test the assumption of normality, in this case, that the residuals are normally 

distributed. This can easily be done by looking at the Q-Q plot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the residuals are normally distributed, they should be positioned consistently along the diagonal 

line. Any obvious deviations along the line would suggest that the assumption of normality has been 

violated. 
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Models: shows the two models tested, null and Time. 

 

P(M):   for the RMANOVA, the analysis sets the prior probabilities of each model is equal (i.e., 

50:50). 

 

P(M │data): shows the updated posterior probabilities having now seen the data.  

 

BFM:  shows how much the data have changed the prior model odds 

 

BF10: shows the Bayes factors for each model.  The first entry is always 1 since the null 

model is compared against itself.  The BF10 for time, 9.83*108 suggests that the 

model which includes Time predicts the observed data 9.83*108 times better than 

the null.  

 

Error %: is very small, 0.85%, and can be considered negligible.  

 

 

The descriptive values and plots show that CK levels were higher on day 3 than days 1 and 5. 

 

 

 

 

 

 

 

If the evidence suggested that the data is best predicted by the null model or that the evidence for 

the alternative was inconsequential. Although evidence for a lack of an effect is still information – 

there is no point in following up with further analyses. 
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FURTHER ANALYSIS 

Select the following options for further analysis: 

 Tables  Estimates 

 Plots  Model averaged posteriors – Group levels in a single plot 

 Plots Q-Q plots of residuals 

 

Also, add the following: 

 

 Estimates are shown in the Model averaged posterior summary table: 

 
This table shows the mean differences and 95% credible intervals for each of the factor levels 

normalised to the intercept (mean value of all the data) and is explained graphically below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The model-averaged posterior distributions (horizontal bars show the 95% credible intervals around 

the median) are shown below on the left. There is a clear separation between day 3 and days 1 and 5.  

Below is a visualisation of the model-averaged posterior summary table data. 
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The post hoc comparisons are shown in the table below. The relative plausibility of each model is 

specified by the prior odds, i.e., the relative probability of the models before observing data. If the 

odds are <1, there a prior belief that there is no difference. The posterior odds are the result of 

multiplying the prior odds by the BF (which is affected by the prior distribution) and represent the 

relative probability of the models after observing the data. 

 

 

 

 

 

 

 

 

 

 

 

Comparison of CK levels on day 1 with day 3: The posterior odds indicate that the data is 30,416 times 

more likely to occur under the alternative hypothesis (H1) than under the null hypothesis.  This can be 

described as decisive evidence in favour of H1. 

 

Comparison of CK levels on day 1 with day 5:  The posterior odds indicate that the data is 4.48 (1/ 

0.223) times more likely to occur under the alternative hypothesis (H0) than under the alternative 

hypothesis.  This can be described as moderate evidence in favour of H0. 

 

Comparison of CK levels on day 3 with day 5:  The posterior odds indicate that the data is 28576 times 

more likely to occur under the alternative hypothesis (H1) than under the null hypothesis.  This can be 

described as decisive evidence in favour of H1 
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. 

 

 

REPORTING THE RESULTS 

Using a Bayesian RM ANOVA (specifying a multivariate Cauchy prior on the effects6), the Bayes factor 

indicates that the data are 9.72*108   times more likely under the model that includes time as the 

predictor, compared to the null model. Post hoc comparisons of day 1 .vs. day 3 and day 3 .vs. day 5 

revealed posterior odds of 30,416 and 28,576 against the null hypothesis, which indicates decisive 

evidence in favour of the alternative hypothesis. When comparing day 1 and 5, there was moderate 

evidence in favour of the null hypothesis. 

 

  

                                                           
6 Rouder et al 2012, van den bergh 2019 https://psyarxiv.com/spreb 
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BAYESIAN MIXED FACTOR ANOVA  
 

Mixed factor ANOVA (another two-way ANOVA) is a combination of both independent and repeated 

measures ANOVA involving more than 1 independent variable (known as factors). Below is a design 

with time as the within and group as the between factor: 

 

 

 

The factors are split into levels, therefore, in this case, Factor 1 has 3 levels and Factor 2 has 2 levels. 

This results in 6 possible combinations. 

 

A “main effect” is the effect of one of the independent variables on the dependent variable, ignoring 

the effects of any other independent variables. There are 2 main effects tested: in this case comparing 

data across factor 1 (i.e., time) is known as the “repeated measures” factor while comparing 

differences between factor 2 (i.e., groups) is known as the “between-subjects” factor. Interaction is 

where one factor influences the other factor.  

 

The standard frequentist approach to ANOVA is to compare the variances between levels of a 

defined factor where the H0 is that these variances are equal.   

 

The Bayesian ANOVA compares the predictive performances of the possible competing models, i.e., 

how likely a set of data is under one model compared to another.  In most cases, one model is the null 

model (H0) suggesting that the data is purely random and the alternative model (H1) that one or more 

of the factors have an effect.  In the mixed factor analysis, multiple models are tested.  

 

ASSUMPTIONS  

Like all other analyses, mixed factor ANOVA makes a series of assumptions which should either be 

addressed in the research design or can the tested for. 

1. The “Repeated measures” factor should contain at least two related (repeated measures) 

categorical groups (levels). 

2. The “Between-subjects” factor should have at least two categorical independent groups 

(levels). 

3. The dependent variable should be continuous and approximately normally distributed for 

all combinations of factors. 

4. There should be homogeneity of variance between the groups. 

5. There should be no outliers. 

 

 

 

 

Independent 

variable (Factor 2) 

Independent variable (Factor 1) = time or condition 
Time/condition 1 Time/condition 2 Time/condition 3 

Group 1 Dependent variable Dependent variable Dependent variable 

Group 2 Dependent variable Dependent variable Dependent variable 
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RUNNING THE MIXED FACTOR BAYESIAN ANOVA 

Open Bayesian Mixed ANOVA.csv in JASP. This contains 4 columns of data relating to the type of 

weightlifting grip and speed of the lift at 3 different loads (%1RM) for deadlifting. Column 1 contains 

the grip type, columns 2-4 contain the 3 repeated measures (30, 50 and70%). Check for outliers using 

boxplots. 

 

NOTE: When running the analysis using the included dataset the results are always likely to be very 

slightly different to the ones in this chapter. This is because the analyses are based on numerical 

algorithms like Markov chain Monte Carlo (MCMC) which reports an error percentage. The higher 

the error percentage the higher the fluctuation of the results. 

 

 Go to ANOVA > Bayesian Repeated measures ANOVA. Define the Repeated Measures Factor, 

%1RMax, and add 3 levels (30, 50 and 70%). Add the appropriate variable to the Repeated measures 

Cells and add Grip to the Between-Subjects Factors: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then select the following options:  

 Bayes Factor – BF10 

 Order – compare to best model 

 Tables – Effects – Across all models 

 Q-Q plots of residuals. 

 Descriptives 

 

In Descriptive plots move %1Rmax to the horizontal axis and Grip to ‘Separate lines’ 

The output should initially comprise of 4 tables and 3 graphs.  
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UNDERSTANDING THE OUTPUT 

Firstly, it is important to test the assumption of normality, in this case, that the residuals are normally 

distributed. This can easily be done by looking at the Q-Q plot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the residuals are normally distributed, they should lie consistently along the diagonal line. Any 

obvious deviations along the line would suggest that the assumption of normality has been violated. 

The assumption of homogeneity of variance can be assessed using Levene's test which is calculated as 

part of the classical ANOVA analysis. 

 

Comparison of the competing models – Best model 

The first column lists all models determined: four alternative models and one null model. The models 

are ordered by their predictive performance relative to the best model in this case. 

In the other columns, results are presented for: 

P(M):   for the ANOVA, the analysis sets the prior probabilities of each of the five models to 

be equal (i.e., 0.2). 

P(M │data): shows the updated probabilities having now seen the data.  

BFM:  shows how much the data have changed the prior model odds 

BF10: shows the Bayes comparison with the best model; for the first row, it is always 1 

since it is being compared to itself. 
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H(1):%1RM + Grip + %1RM*Grip 

A model based on the alternative hypothesis that lift speed depends on %1RM, grip type and the 

interaction between these two factors. This is the best model and has a BF10=1 since it is being 

compared to itself. 

 

H(1):%1RM + Grip 

A model based on the alternative hypothesis that lift speed depends on %1RM and grip type. This a 

BF10 of 0.003 or a BF01 of 322, suggesting that the data are 322 times more likely under the best 

model than under the model with main effects only. 

 

H(1): %1RM,  H(1): grip 

Models based on the alternative hypothesis that lift speed depends on either %1RM or grip alone 

have extremely small BF10 values, as does the null model.  

 

Comparison of the competing models – Null model 

 

Alternatively, the data can be compared to the null model rather than the best model. In the options 

change the order to ‘compare to the null model’. The model comparison has tested 5 models and 

compares the alternative models to the null model (H0) which that states lift speed is not dependent 

on any other factors.   

 

H(1): grip   

A model based on the alternative hypothesis that lift speed depends on grip type alone. This has a 

very small Bayes factor of 2.26 suggesting that there is very little evidence for this model, compared 

to the null model. 

 

H(1): %1RM  

A model based on the alternative hypothesis that lift speed depends on %1RM alone. This has an 

extremely large BF10 (i.e., 3.01*1012), decisively supporting this model over the null model. 

H(1):%1RM + Grip 

 

A model based on the alternative hypothesis that lift speed depends on %1RM and grip type. This also 

has an extremely large BF10 (i.e., 1.5*1014 ), decisively supporting this model over the null model. 
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H(1):%1RM + Grip + %1RM*Grip 

A model based on the alternative hypothesis that lift speed depends on %1RM, grip type and the 

interaction between these two factors. This is the best model and has the largest BF10 (i.e., 4.86*1016), 

against the null model. 

 

In order to compare the %1RM + Grip model against the %1RM + Grip + %1RM*Grip model, one can 

divide out the null hypothesis by computing 4.86*1016)/ 1.5*1014 ) = 324, which should give 

(approximately, due to rounding) the same result as the earlier ‘compare to best model’ analysis (i.e., 

BF  = 322). 

 

Whether one wants to compare to either the best or the null models is a matter of personal choice, 

the result is effectively the same. 

 

Analysis of effects 

This table shows the prior and posterior inclusion probability and the inclusion Bayes factor for each 

of the model's predictors.  These data are based on all the models simultaneously.  

%1Rmax and grip are considered as the main effects and the %1Rmax*Grip the interaction. 

 

 

 

 

 

 

 

The data suggests that there is infinite evidence for the inclusion of %1Rmax than a model without 

this predictor. (it is ‘infinite’ because of the computer’s limited ability to present very small or very 

large numbers,). There is also decisive evidence for the inclusion of Grip and the interaction as 

predictors.  

Descriptive data and plots are shown below. 
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If the evidence suggested that the data is best predicted by the null model or that the evidence for 

the alternative was inconsequential. Although evidence for a lack of an effect is still information – 

there is no point in following up with further analyses. 

 

POST HOC TESTING 

If the ANOVA yields meaningful predictors (i.e., models outperforming the null model), post hoc 

testing can now be carried out. In Post Hoc Tests add %1RM to the analysis box on the right. Bayesian 

post hoc testing is based on pairwise comparisons using Bayesian t-tests. As in frequentist analyses, 

multiple t-tests will increase familywise error. In JASP, methods are used to correct for multiplicity 

based on adjusting the prior odds. 

 

In the analysis options, now: 

 Plots – Model averaged posteriors – Group levels in a single plot 

Add %1Rmax and Grip to the right in ‘Post Hoc tests’. Select Null control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The adjusted posterior odds show that there is strong evidence for a difference between 30% and 50% 

%1Rmax whereas there is decisive evidence for differences between 30 and 70% as well as 50 and 

70%1Rmax. 
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There is also moderate evidence for a difference between reverse and traditional grips BF10 = 6.54. 

The model average posterior distributions for the main effects are shown below. There is a clear 

separation between the %1Rmax levels with 30% having the highest lift velocity and 70% the lowest. 

For grip, the two distributions are closer but still separate without overlapping credible intervals, with 

the traditional grip exhibiting higher lift velocities than the reverse grip. 

 

 

The model-averaged posterior distributions for the interactions are shown below. As can be seen, the 

largest separation is between 70% traditional and reverse lifts. 
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REPORTING THE RESULTS 

 

This study determined the velocity of deadlifts using two different grips and 3 loads based on 

%1Rmax.  Examination of the Q-Q plots suggested that the assumption of normality was not 

violated. A Bayesian mixed factor ANOVA determined that the data were best represented by a 

model that included both main factors, grip and load, and the grip*load interaction. The Bayes factor 

(BF10) was 4.86*1016, indicating decisive evidence in favour of this model when compared to the null 

model. The BF10 in favour of indicating the interaction effect (on top of the two main effects) 

equalled 322. 

Post hoc comparisons (Bayesian t-tests controlled for multiplicity) were subsequently performed.  For 

the load, the adjusted posteriors show that there is strong evidence for a difference between 30% and 

50% %1Rmax (20.6) whereas there is decisive evidence for differences between 30 and 70% as well as 

50 and 70%1Rmax (5.1*108 and 6918 respectively). 
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BAYESIAN CONTINGENCY TABLES 
This is the equivalent of the frequentist chi-square (χ2) test for independence which can be used to 

determine if an association exists between two or more categorical variables. The test produces a 

contingency table, which displays the cross-grouping of the categorical variables. 

The test compares two hypotheses: 

H0: that the categorical variables are independent of each other.  

H1: that the categorical variables are in some way dependent on each other. 

 

The analysis requires two assumptions to be met: 

 The two variables must be categorical data (nominal or ordinal) 

 Each variable should comprise two or more independent categorical groups 

 

There are 4 methods for determining the Bayes factors based on the sampling plan of the research 

design. Consider a researcher wants to collect data on tennis players referred to a physiotherapist for 

ankle injuries and is interested to see if there is a link between the player's gender and whether they 

had had a previous ankle injury.  

 Poisson sampling: 

The sampling scheme is to collect data for a six-month period. There is, therefore, no restriction on 

the cell counts, the cell and grand total counts will be random.  Each cell count will have a Poisson 

distribution. 

 Joint multinomial sampling: 

In this case, data will only be collected for the first 100 players referred to the physiotherapist. This is 

like the Poisson scheme except that the grand total is now fixed. 

 Independent multinomial sampling 

In this case, data will be collected from 50 male and 50 female players. Therefore, either the rows or 

columns are fixed and therefore multinomially distributed. 

 Hypergeometric sampling 

Such a sampling system is rarely applied. In this case, data is collected such that BOTH columns AND 

rows are fixed. This can also be used when two continuous variables are split by their median values 

i.e. median split on age (old-young) and height (small-tall). 

 

When running the Bayesian contingency table analysis, it is important that the correct sampling 

scheme is selected in the options. 
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RUNNING THE ANALYSIS 

Open Bayesian contingency.csv in JASP.  This spreadsheet has data from 85 recreational tennis players 

referred to a physiotherapist practice with ankle injuries over a 6-month period. There are five 

columns of data: 

1. Subject ID 

2. Gender 

3. Type of playing surface 

4. Time of day 

5. Previous history of an ankle injury  

 

Go to Frequencies > Bayesian Contingency tables. Is there an association between gender and the 

history of a previous ankle injury? By convention, the independent variable is usually placed in the 

contingency table columns and the dependent variable is placed in the rows. 

Move gender to Rows and previous injury to Columns.  

 

 

 

 

 

 

 

In Statistics, select the following options, noting that the sampling scheme used in this study was 

Poisson sampling 
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UNDERSTANDING THE OUTPUT 

The output should comprise three tables and one figure. The contingency table shows the counts for 

each cell as well as the row and column totals. It can be seen that 33% of females had a history of a 

previous ankle injury while for the males it was approximately 25% 

 

 

 

 

 

 

The Bayesian tests report the Bayes factor in support of the alternative hypothesis, where BF10 Poisson 

= 0.961 (the BF in support of the null hypothesis can be shown by selecting BF01 in the Statistics options 

and is 1.04). Therefore, there is no evidence supporting either of the hypotheses and the test is 

inconclusive. 

In the other table the median log odds ratio and its calculated credible intervals.  This works out as 

females being only 1.85 times more likely to have had a previous ankle injury compared to males. 

  

The Bayes factors and odds ratios are graphically visualised in the Log Odds Ratio plots. 
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THE BAIN MODULE 
 

In frequentist statistics when performing null hypothesis significance testing (NHST) there is only a 

dichotomous decision for either rejecting or not rejecting the null hypothesis (H0) based on the 

observed data. This does not allow for direct support for H0 only that there is not enough evidence to 

reject it. The evidence in favour of H0 itself cannot be quantified. 

The null hypothesis is usually stated as  H0: the effect = 0 

While the alternative hypothesis is  H1: ≠ H0 

 

The effect in question could be a correlation or difference between means. 

For example, when comparing the means of two groups 

H0:  the effect = 0 mean of group 1 = mean of group 2 

H1: H1: ≠ H0  mean of group 1 ≠ mean of group 2 

When comparing the means of three groups 

H0:  the effect = 0 mean of group 1 = mean of group 2 = mean group 3 

H1: H1: ≠ H0 differences between the groups now explicitly exclude H0, i.e. the three 

group means are not equal to each other. 

These H1 alternatives are considered to be unconstrained and are denoted in JASP as Hu. 

 

BAIN7 is an abbreviation for BAyesian INformative hypothesis evaluation. This uses the Bayes factor to 

evaluate the evidence for both the H0 and multiple alternative hypotheses without having to account 

for multiple testing. 

When null and alternative hypotheses are evaluated using the Bayes factor, all have equal standing, 

i.e. neither has the role of the traditional null or alternative hypotheses, they are simply different 

hypotheses. The probability of observing the data is computed given each hypothesis and translated 

into the Bayes factor from which the best hypothesis is selected. 

BAIN allows alternative hypotheses by offering or entering model constraints. In a t-test, for example, 

the four possible hypotheses could be: 

H0:  the effect = 0 mean of group 1 = mean of group 2 

Hu: Hu: ≠ H0  mean of group 1 ≠ mean of group 2 

H1:   mean of group 1 > mean of group 2 

H2:   mean of group 1 < mean of group 2 

                                                           
7   Hoijtink H et al (2019). A tutorial on testing hypotheses using the Bayes factor. Psychological Methods, 24, 
539-556. DOI: 10.1037/met0000201 
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Independent t-test example 

For comparisons of hypotheses, JASP uses Welch’s t-test which does not assume that the variance of 

the dependent variable is the same in both groups. Open JASP and go to the + icon at the top right 

and tick the BAIN module. This will now add BAIN to the top menu. 

Open Independent t-test.csv, click on BAIN     and then select Welch's t-test.  Add Weight gain 

to the dependent variable and Diet to the grouping variable.  In the main options select: 

Hypothesis test as Equal vs. not equal (i.e. H0:  the effect = 0 and unconstrained H1: ≠ H0). The analysis 

assigns equal prior probabilities for each hypothesis (0.5:0.5). 

 Bayes factor: BF10 

 Other vs. equal 

 Tables – Descriptives 

 Plots – posterior probabilities and descriptive plots 

This should result in two tables and two plots. 

 

 

 

 

 

 

This table shows the evidence in support of the two competing hypotheses. This provides strong 

evidence in favour of the unconstrained alternative hypothesis which has a posterior probability of 

96.1% compared to 3.9% for the null hypothesis. The Bayes factor is therefore 24.7 (0.961/0.039). 
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The posterior probabilities are also visualised on a pizza plot. The descriptive statistics and plot show 

that weight gain is higher on a burger diet. 

 

Adding constrained alternative hypotheses 

Return to the main analysis options where JASP offers a series of unconstrained and constrained 

models. Now select Equal vs, bigger vs. smaller. 

 

 

 

 

 

 

Now three hypotheses have been tested: 

H0: mean of group 1 = mean of group 2 

H1: mean of group 1 > mean of group 2 

H2: mean of group 1 < mean of group 2 

 

By selecting BF10, the alternative hypotheses are compared to the null hypothesis. Having seen the 

data there is strong evidence (BF10 = 49.4) in favour of H1 with a posterior probability of 97.9% 

compared to 2% for H0 and 0.1% for H2.   

 

 

 

 

 

 

 

When comparing H2 with H0, the BF10 = 0.047 or BF01 = 21.1 (1/0.047).  If both hypotheses are deemed 

equally likely a priori, this means that the null hypothesis is now 21 times more likely than group 1 

being smaller than group 2. 
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EXPERIMENTAL DESIGN AND DATA LAYOUT IN EXCEL FOR JASP IMPORT. 
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Independent t-test 
Design example: 

Independent variable Group 1 Group 2 

Dependent variable Data Data 

 

Independent variable                                       Dependent variable 

   Categorical    Continuous 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More dependent variables can be added if required  
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Paired samples t-test 
Design example: 

Independent variable Pre-test Post-test 

Participant Dependent variable 

1 Data Data 

2 Data Data 

3 Data Data 

..n Data Data 

 

   Pre-test    Post-test 
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Correlation 
Design example: 

Simple correlation 

  

Participant Variable 1 Variable 2 Variable 3 Variable 4 Variable ..n 

1 Data Data Data Data Data 

2 Data Data Data Data Data 

3 Data Data Data Data Data 

…n Data Data Data Data Data 

 

       

Multiple correlation  
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Regression. 

Design example: 

Simple Regression 

  

Participant Outcome Predictor 1 Predictor 2 Predictor 3 Predictor ..n 

1 Data Data Data Data Data 

2 Data Data Data Data Data 

3 Data Data Data Data Data 

…n Data Data Data Data Data 

 

       

Multiple regression  

 

 

 

 

 

 

 

 

 

 

 

 

 

More factors and covariates can be added if required 
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One-way Independent ANOVA 
Design example: 

Independent variable Group 1 Group 2 Group 3 Group…n 

Dependent variable Data Data Data Data 

 

Independent variable             Dependent variable 

    (Categorical)    (Continuous) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More dependent variables can be added if required  
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One-way repeated measures ANOVA 
Design example: 

 Independent variable (Factor) 

Participant Level 1 Level 2 Level 3 Level..n 

1 Data Data Data Data 

2 Data Data Data Data 

3 Data Data Data Data 

4 Data Data Data Data 

..n Data Data Data Data 

 

              

      Factor (time)  

 

 

                Levels 

      (Related groups) 

 

 

 

 

 

 

 

 

 

 

 

 

More levels can be added if required  
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Two-way Independent ANOVA 
Design example: 

Factor 1 Supplement 1 Supplement 2 

Factor 2 Dose 1 Dose 2 Dose 3 Dose 1 Dose 2 Dose 3 

Dependent 

variable 
Data Data Data Data Data Data 

 

          Factor 1     Factor 2      Dependent variable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More factors and dependent variables can be added if required 
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Two-way Repeated measures ANOVA 
Design example: 

Factor 1 

Interventions 

Level 1 

i.e. intervention 1 

Level 2 

i.e. intervention 2 

Factor 2 

Time 

Level 1 

i.e. time 1 

Level 2 

i.e. time 2 

Level 3 

i.e. time 3 

Level 1 

i.e. time 1 

Level 2 

i.e. time 2 

Level 3 

i.e. time 3 

1 Data Data Data Data Data Data 

2 Data Data Data Data Data Data 

3 Data Data Data Data Data Data 

..n Data Data Data Data Data Data 

 

 

Factor 1 levels 1-n       Factor 2 levels 1-n         
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Two-way Mixed Factor ANOVA 
Design example: 

Factor 1 

(Between subjects) 

Group 1 Group 2 

Factor 2 levels 

(Repeated measures) 

Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 

1 Data Data Data Data Data Data 

2 Data Data Data Data Data Data 

3 Data Data Data Data Data Data 

..n Data Data Data Data Data Data 

 

Factor 1    Factor 2 levels 

(Categorical)               (Continuous) 
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Contingency tables 
Design example: 

Participant Response 1 Response 2 Response 3 Response…n 

1 Data Data Data Data 

2 Data Data Data Data 

3 Data Data Data Data 

..n Data Data Data Data 

 

All data should be categorical 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


